Disaggregation of spatial autoregressive processes
نویسندگان
چکیده
منابع مشابه
Parameter Estimates for Fractional Autoregressive Spatial Processes
A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.
متن کاملAggregation Bias in Maximum Likelihood Estimation of Spatial Autoregressive Processes
In statistical models of spatial behavior, there is often a mismatch between the scale at which data is available and the scale at which key spatial dependencies are known to occur. However, in attempting to incorporate Þner grain information about spatial dependencies, certain estimation problems arise. Here it is shown that maximum likelihood procedures can produce signiÞcantly negative estim...
متن کاملSpatial disaggregation of rainfall data
Use of output from global Circulation Models (GCMs) by regional or small scale rainfall-runoff models necessitates the disaggregation of the hydrological information available from GCMs to smaller scales. The hydrological processes of interest commonly occur at much smaller scales than those being modelled by GCMs. The present work examines the disaggregation of areally averaged monthly rainfal...
متن کاملOn the existence of Hilbert valued periodically correlated autoregressive processes
In this paper we provide sufficient condition for existence of a unique Hilbert valued ($mathbb{H}$-valued) periodically correlated solution to the first order autoregressive model $X_{n}=rho _{n}X_{n-1}+Z_{n}$, for $nin mathbb{Z}$, and formulate the existing solution and its autocovariance operator. Also we specially investigate equivalent condition for the coordinate process...
متن کاملAn autoregressive point source model for spatial processes.
We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Spatial Statistics
سال: 2013
ISSN: 2211-6753
DOI: 10.1016/j.spasta.2013.01.001